14 research outputs found

    Early human brain development:insights into macroscale connectome wiring

    Get PDF
    BACKGROUND: Early brain development is closely dictated by distinct neurobiological principles. Here, we aimed to map early trajectories of structural brain wiring in the neonatal brain. METHODS: We investigated structural connectome development in 44 newborns, including 23 preterm infants and 21 full-term neonates scanned between 29 and 45 postmenstrual weeks. Diffusion-weighted imaging data were combined with cortical segmentations derived from T2 data to construct neonatal connectome maps. RESULTS: Projection fibers interconnecting primary cortices and deep gray matter structures were noted to mature faster than connections between higher-order association cortices (fractional anisotropy (FA) F = 58.9, p < 0.001, radial diffusivity (RD) F = 28.8, p < 0.001). Neonatal FA-values resembled adult FA-values more than RD, while RD approximated the adult brain faster (F = 358.4, p < 0.001). Maturational trajectories of RD in neonatal white matter pathways revealed substantial overlap with what is known about the sequence of subcortical white matter myelination from histopathological mappings as recorded by early neuroanatomists (mean RD 68 regions r = 0.45, p = 0.008). CONCLUSION: Employing postnatal neuroimaging we reveal that early maturational trajectories of white matter pathways display discriminative developmental features of the neonatal brain network. These findings provide valuable insight into the early stages of structural connectome development

    Determinants of Life Expectancy and its Prospects under the Role of Economic Misery: A Case of Pakistan

    Get PDF
    The present study investigates the determinants of life expectancy in the presence of economic misery using Pakistan’s time series data over the period of 1972-2012. The stationary properties of the variables are examined by applying unit root test accommodating structural breaks. The ARDL bounds testing approach to cointegration is applied to examine the long run relationship between the variables. Our findings show that cointegration between the variables is confirmed. Moreover, health spending improves life expectancy. Food supply contributes to life expectancy. A rise in economic misery deteriorates life expectancy. Urbanization enhances life expectancy while illiteracy declines it. The causality analysis reveals that life expectancy is Granger cause of health spending, food supply, economic misery, urbanization and illiteracy. This paper opens up new insights for policy making authorities to consider the role of economic misery while formulating comprehensive economic policy to improve life expectancy in Pakistan

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication

    10Kin1day: A Bottom-Up Neuroimaging Initiative

    Full text link
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease, with large variation in survival between patients. Currently, it remains rather difficult to predict survival based on clinical parameters alone. Here, we set out to use clinical characteristics in combination with MRI data to predict survival of ALS patients using deep learning, a machine learning technique highly effective in a broad range of big-data analyses. A group of 135 ALS patients was included from whom high-resolution diffusion-weighted and T1-weighted images were acquired at the first visit to the outpatient clinic. Next, each of the patients was monitored carefully and survival time to death was recorded. Patients were labeled as short, medium or long survivors, based on their recorded time to death as measured from the time of disease onset. In the deep learning procedure, the total group of 135 patients was split into a training set for deep learning (n = 83 patients), a validation set (n = 20) and an independent evaluation set (n = 32) to evaluate the performance of the obtained deep learning networks. Deep learning based on clinical characteristics predicted survival category correctly in 68.8% of the cases. Deep learning based on MRI predicted 62.5% correctly using structural connectivity and 62.5% using brain morphology data. Notably, when we combined the three sources of information, deep learning prediction accuracy increased to 84.4%. Taken together, our findings show the added value of MRI with respect to predicting survival in ALS, demonstrating the advantage of deep learning in disease prognostication

    10Kin1day: A Bottom-Up Neuroimaging Initiative

    No full text
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain.Spanish Ministry of Economy and Competitiveness PI12/01882, PI16/00493FEDER fundsEuropean Union (EU)Neumosur foundationSEPAR foundationISCIII Instituto de Salud Carlos II

    Cross-sectional and longitudinal assessment of the upper cervical spinal cord in motor neuron disease

    No full text
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease characterized by both upper and lower motor neuron degeneration. While neuroimaging studies of the brain can detect upper motor neuron degeneration, these brain MRI scans also include the upper part of the cervical spinal cord, which offers the possibility to expand the focus also towards lower motor neuron degeneration. Here, we set out to investigate cross-sectional and longitudinal disease effects in the upper cervical spinal cord in patients with ALS, progressive muscular atrophy (PMA: primarily lower motor neuron involvement) and primary lateral sclerosis (PLS: primarily upper motor neuron involvement), and their relation to disease severity and grey and white matter brain measurements. METHODS: We enrolled 108 ALS patients without C9orf72 repeat expansion (ALS C9-), 26 ALS patients with C9orf72 repeat expansion (ALS C9+), 28 PLS patients, 56 PMA patients and 114 controls. During up to five visits, longitudinal T1-weighted brain MRI data were acquired and used to segment the upper cervical spinal cord (UCSC, up to C3) and individual cervical segments (C1 to C4) to calculate cross-sectional areas (CSA). Using linear (mixed-effects) models, the CSA differences were assessed between groups and correlated with disease severity. Furthermore, a relationship between CSA and brain measurements was examined in terms of cortical thickness of the precentral gyrus and white matter integrity of the corticospinal tract. RESULTS: Compared to controls, CSAs at baseline showed significantly thinner UCSC in all groups in the MND spectrum. Over time, ALS C9- patients demonstrated significant thinning of the UCSC and, more specifically, of segment C3 compared to controls. Progressive thinning over time was also observed in C1 of PMA patients, while ALS C9+ and PLS patients did not show any longitudinal changes. Longitudinal spinal cord measurements showed a significant relationship with disease severity and we found a significant correlation between spinal cord and motor cortex thickness or corticospinal tract integrity for PLS and PMA, but not for ALS patients. DISCUSSION: Our findings demonstrate atrophy of the upper cervical spinal cord in the motor neuron disease spectrum, which was progressive over time for all but PLS patients. Cervical spinal cord imaging in ALS seems to capture different disease effects than brain neuroimaging. Atrophy of the cervical spinal cord is therefore a promising additional biomarker for both diagnosis and disease progression and could help in the monitoring of treatment effects in future clinical trials
    corecore